230 research outputs found

    A Search Strategy of Level-Based Flooding for the Internet of Things

    Full text link
    This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales

    ICOSLG-associated immunological landscape and diagnostic value in oral squamous cell carcinoma: a prospective cohort study

    Get PDF
    Background: We previously reported that stroma cells regulate constitutive and inductive PD-L1 (B7-H1) expression and immune escape of oral squamous cell carcinoma. ICOSLG (B7-H2), belongs to the B7 protein family, also participates in regulating T cells activation for tissue homeostasis via binding to ICOS and inducing ICOS+ T cell differentiation as well as stimulate B-cell activation, while it appears to be abnormally expressed during carcinogenesis. Clarifying its heterogeneous clinical expression pattern and its immune landscape is a prerequisite for the maximum response rate of ICOSLG-based immunotherapy in a specific population.Methods: This retrospective study included OSCC tissue samples (n = 105) to analyze the spatial distribution of ICOSLG. Preoperative peripheral blood samples (n = 104) and independent tissue samples (n = 10) of OSCC were collected to analyze the changes of immunocytes (T cells, B cells, NK cells and macrophages) according to ICOSLG level in different cellular contents.Results: ICOSLG is ubiquitous in tumor cells (TCs), cancer-associated fibroblasts (CAFs) and tumor infiltrating lymphocytes (TILs). Patients with high ICOSLGTCs or TILs showed high TNM stage and lymph node metastasis, which predicted a decreased overall or metastasis-free survival. This sub-cohort was featured with diminished CD4+ T cells and increased Foxp3+ cells in invasive Frontier in situ, and increased absolute numbers of CD3+CD4+ and CD8+ T cells in peripheral blood. ICOSLG also positively correlated with other immune checkpoint molecules (PD-L1, CSF1R, CTLA4, IDO1, IL10, PD1).Conclusion: Tumor cell-derived ICOSLG could be an efficient marker of OSCC patient stratification for precision immunotherapy

    Pan-Genomic Study of Mycobacterium tuberculosis Reflecting the Primary/Secondary Genes, Generality/Individuality, and the Interconversion Through Copy Number Variations

    Get PDF
    Tuberculosis (TB) has surpassed HIV as the leading infectious disease killer worldwide since 2014. The main pathogen, Mycobacterium tuberculosis (Mtb), contains ~4,000 genes that account for ~90% of the genome. However, it is still unclear which of these genes are primary/secondary, which are responsible for generality/individuality, and which interconvert during evolution. Here we utilized a pan-genomic analysis of 36 Mtb genomes to address these questions. We identified 3,679 Mtb core (i.e., primary) genes, determining their phenotypic generality (e.g., virulence, slow growth, dormancy). We also observed 1,122 dispensable and 964 strain-specific secondary genes, reflecting partially shared and lineage-/strain-specific individualities. Among which, five L2 lineage-specific genes might be related to the increased virulence of the L2 lineage. Notably, we discovered 28 Mtb “Super Core Genes” (SCGs: more than a copy in at least 90% strains), which might be of increased importance, and reflected the “super phenotype generality.” Most SCGs encode PE/PPE, virulence factors, antigens, and transposases, and have been verified as playing crucial roles in Mtb pathogenicity. Further investigation of the 28 SCGs demonstrated the interconversion among SCGs, single-copy core, dispensable, and strain-specific genes through copy number variations (CNVs) during evolution; different mutations on different copies highlight the delicate adaptive-evolution regulation amongst Mtb lineages. This reflects that the importance of genes varied through CNVs, which might be driven by selective pressure from environment/host-adaptation. In addition, compared with Mycobacterium bovis (Mbo), Mtb possesses 48 specific single core genes that partially reflect the differences between Mtb and Mbo individuality

    Sequence variations in DNA repair gene XPC is associated with lung cancer risk in a Chinese population: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleotide excision repair (NER) protein, xeroderma pigmentosum C (XPC), participates in recognizing DNA lesions and initiating DNA repair in response to DNA damage. Because mutations in <it>XPC </it>cause a high risk of cancer in XP patients, we hypothesized that inherited sequence variations in <it>XPC </it>may alter DNA repair and thus susceptibility to cancer.</p> <p>Methods</p> <p>In this hospital-based case-control study, we investigated five <it>XPC </it>tagging, common single nucleotide polymorphisms (tagging SNPs) in 1,010 patients with newly diagnosed lung cancer and 1,011 matched cancer free controls in a Chinese population.</p> <p>Results</p> <p>In individual tagging SNP analysis, we found that rs3731055<it>AG+AA </it>variant genotypes were associated with a significantly decreased risk of lung adenocarcinoma [adjusted odds ratio (OR), 0.71; 95% confidence interval (CI), 0.56–0.90] but an increased risk of small cell carcinomas [adjusted OR, 1.79; 95% CI, 1.05–3.07]. Furthermore, we found that haplotype <it>ACCCA </it>was associated with a decreased risk of lung adenocarcinoma [OR, 0.78; 95% CI, 0.62–0.97] but an increased risk of small cell carcinomas [OR, 1.68; 95% CI, 1.04–2.71], which reflected the presence of rs3731055<it>A </it>allele in this haplotype. Further stratified analysis revealed that the protective effect of rs3731055<it>AG+AA </it>on risk of lung adenocarcinoma was more evident among young subjects (age ≤ 60) and never smokers.</p> <p>Conclusion</p> <p>These results suggest that inherited sequence variations in <it>XPC </it>may modulate risk of lung cancer, especially lung adenocarcinoma, in Chinese populations. However, these findings need to be verified in larger confirmatory studies with more comprehensively selected tagging SNPs.</p

    Inherited variation in immune genes and pathways and glioblastoma risk

    Get PDF
    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) and a subset of 6029 SNPs in 893 genes from 531 cases and 1782 controls from MD Anderson (MDA). To further assess consistency of SNP-level associations, we also compared data from the UK (266 cases and 2482 controls) and the Mayo Clinic (114 cases and 111 controls). Although three correlated epidermal growth factor receptor (EGFR) SNPs were consistently associated with glioblastoma in all four data sets (Mantel–Haenzel P values = 1 × 10−5 to 4 × 10−3), independent replication is required as genome-wide significance was not attained. In gene-level analyses, eight immune function genes were significantly (minP < 0.05) associated with glioblastoma; the IL-2RA (CD25) cytokine gene had the smallest minP values in both UCSF (minP = 0.01) and MDA (minP = 0.001) data sets. The IL-2RA receptor is found on the surface of regulatory T cells potentially contributing to immunosuppression characteristic of the glioblastoma microenvironment. In pathway correlation analyses, cytokine signaling and adhesion–extravasation–migration pathways showed similar associations with glioblastoma risk in both MDA and UCSF data sets. Our findings represent the first systematic description of immune genes and pathways that characterize glioblastoma risk

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF
    corecore